Evalutation Apprentissage par renforcement

Pierre Cavalier

January 22, 2024

1 Etude théorique d’un nouvel algorithme de points fixes

Soit d > 1, F: R? — R? une application admettant un point fixe z, € R% n > 0, et 2o € RZ. On
définit I'algorithme Ada-FP comme suit :

ka—xk
)
k
Vb lFa — 3

avec la convention 0/0 = 0. On note pour tout k > 0,

k>0, (Ada-FP)

T+l =Tk + 7

up = Fo — oy,

1
k b
Vbl P — a3

Mk =1

1 2
Dy = max 5llze = 2.>.

1.1

Montrer que pour tout k > 0,
21— zll3 < o — @l + 2neu (zx — 22) 4+ 717 us |13
En utilisant le fait que zp11 = z + Nruk:

[#r1 — 213 = |@r + mrue — 213
= (Th — To + MU, Th — To + NiUk)
= (T — T, Tk — Ts) + 2(Th — T, MUi) + (MU, M)

= ||z — @3 + 2mui (o — @) + 13 furl3

Et ce par définition de la norme |||z dans R¢ issue du produit scalaire euclidien.
Ce qui permet, en particulier, de trouver le résultat voulu:

k1 = 2all3 < llow — 2all3 + 2 (21 — 2. + i flu]3.

1.2

En déduire que pour tout k > 0,

Pour un /¢ fixé:

lrers = 213 < llwe — @[3 + 2neu (we — 2.) + 07 [lue3

1
= %(kul — a5 — e — 2 13) — melluell3 < 2u] (@0 —) (car ny > 0)
1 1| ue3
= u (z. — x0) > Tw(llxe — 2|3 — wes1 — 2 13) + 5 -

En sommant les inégalités pour ¢ allant de 0 & k on obtient:

k k k

1 ||Ue
S 20 £ 3 gl s~y + > M

£=0 £=0 £=0

Il suffit maintenant de prouver que Zz 0 271[(|lze—z4 |3 = ||wesr —24|3) < D— et I'inégalité souhaitée

sera, obtenue.

20

(ksr —

z.[3)

L L L
> g Ulme =l = llres = auld) = 3 5o =2l + 3 5o (e = 2.)
=0 =0 “"lt =1 <=
k
1) 1 1)
= — (|0 — 2«||3) + — — —)T — T4||5 —
g 120 = 218) + 3 = g e =
k
1 1
< —Dp+Dp)» (——)
ézzlm Ne—1
1 1 1
SDp(—+—+ —)
Mo Nk Mo
< Dk
Nk

Ce qui acheve la démonstration.

1.3
1.3.1

Soit (ar)k>0 une suite positive. Montrer que pour tout & > 0,

Procédons par récurrence, pour k = 0 on obtient:

0
> ——=
0
=0 /> o Gm
On suppose 'hypothése vraie pour k fixé. Montrons qu’elle est vraie pour k + 1:
k+1 k

Z as as Qg1
£ k+1
=0 V Zm 0 dm =0 \/Zm =0 dm \/Zm =0 dm

(Par hypothese de récurrence)

>0

La fonction x + / est concave et sa dérivée est la fonction z — ﬁ défini sur Rf. En un point

a fixé de R, on peut écrire I’équation de la tangente de parametre b qui, par propriété des fonctions

concaves, est au dessus de la courbe de la fonction:
1 1
aﬁ\/BJr—a—b <:>2\/522 a+ —
Va 5 ﬁ)() Va 7

En prenant a = Z];:o ap et b= Z?ié ag, on obtient (en remarquant que b — a = ag41):

(b—a)

k+1 k k+1

Gf+1 e
2 > 9 2
darz2 > at oS 2) o
0=0 £=0 Zm:O A £=0 Em:O am

L’initialisation et 'hérédité étant vérifiée, ’hypothese de récurrence est donc vraie pour tout £ > 0
ce qui conclut la question.

1.3.2

En déduire que pour k£ > 0,

k
> lucl3:
£=0

En partant de la question 2 et en utilisant la 3.a sur la suite a; = ||ug|3 qui est bien une suite

" _ n .
positive et que 1y = ——==——=, On a:
Vi olluel?’

k k
Dy, upl|3

S uf o o < 24y il

£=0 =0 2 ZeonW”%

Dey/Sh ol [&
< =T | Sl

£=0

IN

_D k

k

@+)§]w%
" =0

1.4

On suppose que F' est yp-Lipschitzienne pour un certain 0 < vyp < 1 i.e:
Vo,y € R, ||F(z) = F(y)ll2 < vellz =yl

1.4.1

Pour tout k£ > 0, montrons que

|Fap — z]|2 < 2(Fap — 2)T (2% — x1).

En partant du fait x, = Fx, on obtient:

|Fzy — 2|3 = | Fogp + Fr. — 2. — 213
= |Fxp — Fa. |3+ ||z« — zx|3 + 2(xp — 4, Fxp, — Fi,.)
< 9 |lze — 2k|l3 + |7 — 28|34+ 2(28 — 4, Fog — 21 + 28 — 224)
-
<1
< 2l|wy — |3+ 2(xp — 4, Fxp —) + 2(xh — T, Th —)

<2l|w — 2|3+ 22k — 24, Fap — 21) — 2(Tp — To, Ty — 1)

llws —zxll3
< 2<J}k — Xy, Py — xk>
< 2(Fxy, — xp) T (2 — xp)
1.4.2
En déduire que pour tout k£ > 0, on a
2 Dy,
Fo,—)
0T, IFze = zells < —(n+ =25).
On rappelle que up = Fxp — x4:
k
Z luell3 = Z [Fae —wll3 < 2uf (@* —) (D'apres 4.a)
(=0 =0
D k
<2t) (Sl ©apres 30)

£=0

Si tout les ||ug||3 sont nul alors I'inégalité est vérifiée, sinon on divise les deux parties de I'inégalité
r \/||ue||2 qui est strictement positif:

Le terme de gauche est une somme de k + 1 termes ce qui implique que le plus petit terme de cette

2
somme doit étre & minima plus petit que la moyenne du terme de droite & savoir (2 (n + %)) /(k+1).

En particulier k + 1 étant plus quand grand que k£ on peut le remplacer dans ’expression:

(2 (n+ %)Q)
k

in [lu +D’“
oin, [lue z_\f "

Ce qui montre le résultat voulu car uy = Fxy — xy.

min 3 <

1.4.3
Qu’en déduire sur ming<e<y ||¢ — Zs|l2 ?
On rappelle que dans un contexte de programmation dynamique (i.e. la dynamique de transition p

du MDP est disponible sous forme explicite) les itérations valeur (synchrones) pour I’évaluation d’une
politique 7 € IIy sont données par

vk = Brog, k21, (VIY) (VI
et pour le controle, les itérations sont données par

vk = Bovk, k21 (VL) (vt
respectivement.
1.5

En utilisant (Ada-FP), définir des algorithmes analogues aux intérations valeur synchrones classiques
(VI;V)) et (VIV)). On appellera (Ada—VISTV)) et (Ada—Vlgrv)) les algorithmes ainsi obtenus.

D’apres la proposition 2.2.4.(iv), les opérateurs de Bellman B et B, sont y-lipschitz avec v €]0, 1]
ce qui remplit les conditions requises pour obtenir les résultats de la partie plus haute. On obtient
ainsi les algorithmes suivants:

Brvy —
Vg1 = Uk + 1) - Uk Uk , k>0, (Ada — VI{")
Vb1 Bave — will
B*Uk — Vg

k>0, (Ada — VI(V))

Vg+1 =V + 1

)
k
\/} :eonB*W - W”%

2 Comparaison en pratique avec les algorithmes classiques

Choisir un MDP de taille raisonnable, ¢’est-a-dire dont on puisse calculer les fonctions valeurs v, v. (7 €
IIp) en un temps raisonnable. On pourra soit reprendre un MDP vu en TP, soit en trouver un dans
un livre, sur internet, dans une librairie (e.g. Gymnasium) ou encore en créer un soi-méme, mais pour
cette partie, il est nécessaire de connaitre les transitions de fagon explicite.

2.1

Se donner une politique stationnaire 7 € Iy quelconque, ainsi qu'une fonction valeur initiale vy € RS
tirée aléatoirement une fois pour toutes. Comparer en pratique la vitesse de convergence de Ada—VISrV)
avec celle de Vlgrv). On pourra tracer, avec une échelle logarithmique en ordonnée, les quantités

ok — 07 [|oo et [[ox — Bruklloo
en fonction de k. Essayer différentes valeurs pour n > 0.

Pour cette partie, nous étudirons le probleme du labyrinthe vu en TP1 dont nous rappellerons
brievement 1’essence. On part en haut a gauche d’un labyrinthe de 30x30 dont ’objectif est d’arriver
en haut & droite. Deux murs occupant deux tiers de la hauteur (respectivement partant du haut et
du bas) sont placés (& respectivement un tier et deux tiers de la largeur). Les autres cases ont une
probabilité 0.15 d’étre remplacées par des murs.

Figure 1: Exemple de labyrinthe

On estime les quantités voulu a partir de différente valeurs de 7 choisies entre 1 et 500 ainsi que
pour l'algorithme ”classique” du cours se basant sur l'itération vg41 = Brvg. Pour chaque valeur de
7, on fait tourner l'algorithme sur 1000 itérations avec une initialisation aléatoire (mais toujours la
méme). Pour estimer v,, on fait tourner algorithme sur 10000 itérations en partant du principe qu’il
aura convergé. Pour ce qui est de la politique initiale, celle-ci est décidée aléatoirement des le départ.

270 210
50 50

‘‘‘‘‘‘‘‘‘‘

On remarque que I’algorithme initialement vu en cours est le plus performant. Tout les algorithmes
semblent converger bien que cela se fasse a des vitesses différentes. On remarque notamment que que
plus 1 est grand plus la convergence se fait rapidement pour un grand nombre d’itérations. Cependant,
pour les premieres itérations, un 7 plus petit permet une convergence plus rapide. Cela s’explique par
le fait que le terme 7 Pz est trop grand pour les premieres itérations si) est grand.

Vil Fae—aell3

2.2
Méme question pour (Ada — VI()) et (VI())

a0
1010

a0 o a0 1000 13 20 %0 &0 a0
‘‘‘‘‘‘‘‘‘

(a) [[or — v.lloo (b) [[vx — Bovlloo

On obtient les mémes résultats, la convergence est plus rapide pour les 7 dans un premier temps
mais la convergence est plus lente pour un plus grand nombre d’itération. On remarque en outre que la
converge des algorithmes Ada convergent vers des valeurs plus grandes que pour la question précédente
meéme si, ces valeurs restent tres faibles.

3 Extensions

Reprendre la démarche de la Section 2 en incorporant, par exemple, un ou plusieurs des aspects suivants

e itérations de fonctions action-valeur,
e itérations asynchrones

e méthode d’apprentissage par renforcement utilisant des estimateurs stochastiques des opérateurs
de Bellman

e approximation de la fonction valeur par une classe paramétrique

e variante de (Ada-FP) définie composante par composante

F(xg); —

\/Z?:o(F(W)j —z5)?

Tyl = Tk, + 1)

3.1 Itérations de fonctions action-valeur

On reprend reprend 'algorithme Ada et on I’adapte pour les fonctions action-valeur de la fagon suiv-
ante:

Brqr —
Qk+1 = qr +1 o , k>0, (Ada — VI
k
Vb I Bear — 4l

De la méme maniere que précédemment on calcule les différences de normes en remplagant les vy,
par des q:

Convergence of vy

Convergence of g

%0 &0 a0 1000

1000 1) 200
Herations

Ireations

(@) llgk — gxlloo (®) llgx — Brgrlloo

On observe les méme résultats, les taux d’apprentissage plus élévé favorisent une convergence plus

précises au fur et & mesure des itérations.

3.1.1 Variante de (Ada-FP) définie composante par composante

On définit la variante de (Ada-FP) définie composante par composante de la fagon suivante:

B7T]] .
Vk+1,j = Vk,j 1 (08); = kg , 1<j<d, k>0

\/ Yi—o(Br(ve); — vr,5)?

Le processus étant plus long a tourner, on se limitera a cent itération, ce qui est suffisant pour voir
les tendances se former bien que rendant la comparaison avec les autres méthodes plus laborieuses.

Convergence of vi Convergence of vi — Bavi

(a) [lox = vlloo

On remarque comme précédemment qu’un 7 trop grand entraine des variations trop importantes
dans les premieres itérations. On remarque de plus qu'un learning rate trop élevé n’entraine pas des

convergence spécialement plus rapide.

Au final, les différents algorithmes n’entrainent pas spécialement des résultats plus probant, cela
peut étre du au fait que le MDP est peut étre trop simple et la convergence est trop rapide.

	Etude théorique d’un nouvel algorithme de points fixes
	
	
	
	
	

	
	
	
	

	

	Comparaison en pratique avec les algorithmes classiques
	
	

	Extensions
	Itérations de fonctions action-valeur
	Variante de (Ada-FP) définie composante par composante

