
Evalutation Apprentissage par renforcement

Pierre Cavalier

January 22, 2024

1 Etude théorique d’un nouvel algorithme de points fixes

Soit d ≥ 1, F : Rd → Rd une application admettant un point fixe x∗ ∈ Rd, η > 0, et x0 ∈ Rd. On
définit l’algorithme Ada-FP comme suit :

xk+1 = xk + η
Fxk − xk√∑k
ℓ=0∥Fxℓ − xℓ∥22

, k ≥ 0, (Ada-FP)

avec la convention 0/0 = 0. On note pour tout k ≥ 0,

uk = Fxk − xk,

ηk = η
1√∑k

ℓ=0∥Fxℓ − xℓ∥22
,

Dk = max
0≤ℓ≤k

1

2
∥xℓ − x∗∥22.

1.1

Montrer que pour tout k ≥ 0,

∥xk+1 − x∗∥22 ≤ ∥xk − x∗∥22 + 2ηku
T
k (xk − x∗) + η2k∥uk∥22.

En utilisant le fait que xk+1 = xk + ηkuk:

∥xk+1 − x∗∥22 = ∥xk + ηkuk − x∗∥22
= ⟨xk − x∗ + ηkuk, xk − x∗ + ηkuk⟩
= ⟨xk − x∗, xk − x∗⟩+ 2⟨xk − x∗, ηkuk⟩+ ⟨ηkuk, ηkuk⟩
= ∥xk − x∗∥22 + 2ηku

T
k (xk − x∗) + η2k∥uk∥22

Et ce par définition de la norme ∥.∥2 dans Rd issue du produit scalaire euclidien.
Ce qui permet, en particulier, de trouver le résultat voulu:

∥xk+1 − x∗∥22 ≤ ∥xk − x∗∥22 + 2ηku
T
k (xk − x∗) + η2k∥uk∥22.

1.2

En déduire que pour tout k ≥ 0,

k∑
ℓ=0

uT
ℓ (x∗ − xℓ) ≤

Dk

ηk
+

k∑
ℓ=0

ηℓ∥uℓ∥22
2

.

1



Pour un ℓ fixé:

∥xℓ+1 − x∗∥22 ≤ ∥xℓ − x∗∥22 + 2ηℓu
T
l (xℓ − x∗) + η2ℓ∥uℓ∥22

=⇒ 1

ηℓ
(∥xℓ+1 − x∗∥22 − ∥xℓ − x∗∥22)− ηℓ∥uℓ∥22 ≤ 2uT

l (xℓ − x∗) (car ηℓ > 0)

=⇒ uT
l (x∗ − xℓ) ≥

1

2ηℓ
(∥xℓ − x∗∥22 − ∥xℓ+1 − x∗∥22) +

ηℓ∥uℓ∥22
2

En sommant les inégalités pour ℓ allant de 0 à k on obtient:

k∑
ℓ=0

uT
ℓ (x∗ − xℓ) ≤

k∑
ℓ=0

1

2ηℓ
(∥xℓ − x∗∥22 − ∥xℓ+1 − x∗∥22) +

k∑
ℓ=0

ηℓ∥uℓ∥22
2

.

Il suffit maintenant de prouver que
∑k

ℓ=0
1

2ηℓ
(∥xℓ−x∗∥22−∥xℓ+1−x∗∥22) ≤ Dk

ηk
et l’inégalité souhaitée

sera obtenue.

k∑
ℓ=0

1

2ηℓ
(∥xℓ − x∗∥22 − ∥xℓ+1 − x∗∥22) =

k∑
ℓ=0

1

2ηℓ
(∥xℓ − x∗∥22) +

k+1∑
ℓ=1

1

2ηℓ−1
(∥xℓ − x∗∥22)

=
1

2η0
(∥x0 − x∗∥22) +

k∑
ℓ=1

(
1

2ηℓ
− 1

2ηℓ−1
)∥xℓ − x∗∥22 −

1

2ηk
(∥xk+1 − x∗∥22)︸ ︷︷ ︸

>0

≤ 1

η0
Dk +Dk

k∑
ℓ=1

(
1

ηℓ
− 1

ηℓ−1
)

≤ Dk(
1

η0
+

1

ηk
+

1

η0
)

≤ Dk

ηk

Ce qui achève la démonstration.

1.3

1.3.1

Soit (ak)k≥0 une suite positive. Montrer que pour tout k ≥ 0,

k∑
ℓ=0

aℓ√∑ℓ
m=0 am

≤ 2

√√√√ k∑
ℓ=0

aℓ,

Procédons par récurrence, pour k = 0 on obtient:

0∑
ℓ=0

aℓ√∑ℓ
m=0 am

=
a0√
a0

=
√
a0 ≤ 2

√√√√ 0∑
ℓ=0

aℓ,

On suppose l’hypothèse vraie pour k fixé. Montrons qu’elle est vraie pour k + 1:

k+1∑
ℓ=0

aℓ√∑ℓ
m=0 am

=

k∑
ℓ=0

aℓ√∑ℓ
m=0 am

+
ak+1√∑k+1
m=0 am

≤ 2

√√√√ k∑
ℓ=0

aℓ +
ak+1√∑k+1
m=0 am

(Par hypothèse de récurrence)

2



La fonction x 7→
√
x est concave et sa dérivée est la fonction x 7→ 1

2
√
x
défini sur R+

∗ . En un point

a fixé de R+
∗ , on peut écrire l’équation de la tangente de paramètre b qui, par propriété des fonctions

concaves, est au dessus de la courbe de la fonction:

√
a ≤

√
b+

1

2
√
b
(a− b) ⇐⇒ 2

√
b ≥ 2

√
a+

1√
b
(b− a)

En prenant a =
∑k

ℓ=0 aℓ et b =
∑k+1

ℓ=0 aℓ, on obtient (en remarquant que b− a = ak+1):

2

√√√√k+1∑
ℓ=0

aℓ ≥ 2

√√√√ k∑
ℓ=0

aℓ +
ak+1√∑k+1
m=0 am

≥
k+1∑
ℓ=0

aℓ√∑ℓ
m=0 am

L’initialisation et l’hérédité étant vérifiée, l’hypothèse de récurrence est donc vraie pour tout k ≥ 0
ce qui conclut la question.

1.3.2

En déduire que pour k ≥ 0,

k∑
ℓ=0

uT
ℓ (x∗ − xℓ) ≤

(
η +

Dk

η

)√√√√ k∑
ℓ=0

∥uℓ∥22.

En partant de la question 2 et en utilisant la 3.a sur la suite aℓ = ∥uℓ∥22 qui est bien une suite
positive et que ηℓ =

η√∑k
ℓ=0∥uℓ∥2

2

, on a:

k∑
ℓ=0

uT
ℓ (x∗ − xℓ) ≤

Dk

ηk
+

k∑
ℓ=0

η∥uℓ∥22
2
√∑k

ℓ=0∥uℓ∥22

≤
Dk

√∑k
ℓ=0∥uℓ∥22
η

+ η

√√√√ k∑
ℓ=0

∥uℓ∥22

≤
(
η +

Dk

η

)√√√√ k∑
ℓ=0

∥uℓ∥22

1.4

On suppose que F est γF -Lipschitzienne pour un certain 0 ≤ γF < 1 i.e:

∀x, y ∈ Rd, ∥F (x)− F (y)∥2 ≤ γF ∥x− y∥2

1.4.1

Pour tout k ≥ 0, montrons que

∥Fxk − xk∥22 ≤ 2(Fxk − xk)
T (x∗ − xk).

En partant du fait x∗ = Fx∗ on obtient:

3



∥Fxk − xk∥22 = ∥Fxk + Fx∗ − x∗ − xk∥22
= ∥Fxk − Fx∗∥22 + ∥x∗ − xk∥22 + 2⟨xk − x∗, Fxk − Fx∗⟩
≤ γF︸︷︷︸

≤1

∥x∗ − xk∥22 + ∥x∗ − xk∥22 + 2⟨xk − x∗, Fxk − xk + xk − x∗⟩

≤ 2∥x∗ − xk∥22 + 2⟨xk − x∗, Fxk − xk⟩+ 2⟨xk − x∗, xk − x∗⟩
≤ 2∥x∗ − xk∥22 + 2⟨xk − x∗, Fxk − xk⟩ − 2 ⟨xk − x∗, x∗ − xk⟩︸ ︷︷ ︸

∥x∗−xk∥2
2

≤ 2⟨xk − x∗, Fxk − xk⟩
≤ 2(Fxk − xk)

T (x∗ − xk)

1.4.2

En déduire que pour tout k ≥ 0, on a

min
0≤ℓ≤k

∥Fxℓ − xℓ∥2 ≤ 2√
k
(η +

Dk

η
).

On rappelle que uℓ = Fxℓ − xℓ:

k∑
ℓ=0

∥uℓ∥22 =

k∑
ℓ=0

∥Fxℓ − xℓ∥22 ≤
k∑

ℓ=0

2uT
ℓ (x

∗ − xℓ) (D’après 4.a)

≤ 2

(
η +

Dk

η

)√√√√ k∑
ℓ=0

∥uℓ∥22 (D’après 3.b)

Si tout les ∥uℓ∥22 sont nul alors l’inégalité est vérifiée, sinon on divise les deux parties de l’inégalité
par

√
∥uℓ∥22 qui est strictement positif:

0 ≤

√√√√ k∑
ℓ=0

∥uℓ∥22 ≤ 2

(
η +

Dk

η

)

=⇒
k∑

ℓ=0

∥uℓ∥22 ≤
(
2

(
η +

Dk

η

))2

La fonction carré étant croissante sur R+

Le terme de gauche est une somme de k+1 termes ce qui implique que le plus petit terme de cette

somme doit être à minima plus petit que la moyenne du terme de droite à savoir
(
2
(
η + Dk

η

))2

/(k+1).

En particulier k + 1 étant plus quand grand que k on peut le remplacer dans l’expression:

min
0≤ℓ≤k

∥uℓ∥22 ≤
(2

(
η + Dk

η

)2

)

k

min
0≤ℓ≤k

∥uℓ∥2 ≤ 2√
k

(
η +

Dk

η

)
Ce qui montre le résultat voulu car uℓ = Fxℓ − xℓ.

4



1.4.3

Qu’en déduire sur min0≤ℓ≤k ∥xℓ − x∗∥2 ?

On rappelle que dans un contexte de programmation dynamique (i.e. la dynamique de transition p
du MDP est disponible sous forme explicite) les itérations valeur (synchrones) pour l’évaluation d’une
politique π ∈ Π0 sont données par

vk+1 = Bπvk, k ≥ 1, (VI
V
π )) (VI

(V )
π )

et pour le contrôle, les itérations sont données par

vk+1 = B∗vk, k ≥ 1, (VI
V
∗ )) (VI

(V )
π )

respectivement.

1.5

En utilisant (Ada-FP), définir des algorithmes analogues aux intérations valeur synchrones classiques

(VI
(V )
π ) et (VI(V )

∗ ). On appellera (Ada-VI
(V )
π ) et (Ada-VI

(V )
π ) les algorithmes ainsi obtenus.

D’après la proposition 2.2.4.(iv), les opérateurs de Bellman Bπ et B∗ sont γ-lipschitz avec γ ∈]0, 1[
ce qui remplit les conditions requises pour obtenir les résultats de la partie plus haute. On obtient
ainsi les algorithmes suivants:

vk+1 = vk + η
Bπvk − vk√∑k
ℓ=0∥Bπvℓ − vℓ∥22

, k ≥ 0, (Ada−VI(V )
π )

vk+1 = vk + η
B∗vk − vk√∑k
ℓ=0∥B∗vℓ − vℓ∥22

, k ≥ 0, (Ada−VI(V )
∗ )

5



2 Comparaison en pratique avec les algorithmes classiques

Choisir un MDP de taille raisonnable, c’est-à-dire dont on puisse calculer les fonctions valeurs vπ, v∗(π ∈
Π0) en un temps raisonnable. On pourra soit reprendre un MDP vu en TP, soit en trouver un dans
un livre, sur internet, dans une librairie (e.g. Gymnasium) ou encore en créer un soi-même, mais pour
cette partie, il est nécessaire de connâıtre les transitions de façon explicite.

2.1

Se donner une politique stationnaire π ∈ Π0 quelconque, ainsi qu’une fonction valeur initiale v0 ∈ RS

tirée aléatoirement une fois pour toutes. Comparer en pratique la vitesse de convergence de Ada−VI(V )
π

avec celle de VI(V )
π . On pourra tracer, avec une échelle logarithmique en ordonnée, les quantités

∥vk − vπ∥∞ et ∥vk −Bπvk∥∞

en fonction de k. Essayer différentes valeurs pour η > 0.

Pour cette partie, nous étudirons le problème du labyrinthe vu en TP1 dont nous rappellerons
brièvement l’essence. On part en haut à gauche d’un labyrinthe de 30×30 dont l’objectif est d’arriver
en haut à droite. Deux murs occupant deux tiers de la hauteur (respectivement partant du haut et
du bas) sont placés (à respectivement un tier et deux tiers de la largeur). Les autres cases ont une
probabilité 0.15 d’être remplacées par des murs.

Figure 1: Exemple de labyrinthe

On estime les quantités voulu à partir de différente valeurs de η choisies entre 1 et 500 ainsi que
pour l’algorithme ”classique” du cours se basant sur l’itération vk+1 = Bπvk. Pour chaque valeur de
η, on fait tourner l’algorithme sur 1000 itérations avec une initialisation aléatoire (mais toujours la
même). Pour estimer v∗, on fait tourner l’algorithme sur 10000 itérations en partant du principe qu’il
aura convergé. Pour ce qui est de la politique initiale, celle-ci est décidée aléatoirement dès le départ.

(a) ∥vk − v∗∥∞ (b) ∥vk −Bπvk∥∞

6



On remarque que l’algorithme initialement vu en cours est le plus performant. Tout les algorithmes
semblent converger bien que cela se fasse à des vitesses différentes. On remarque notamment que que
plus η est grand plus la convergence se fait rapidement pour un grand nombre d’itérations. Cependant,
pour les premières itérations, un η plus petit permet une convergence plus rapide. Cela s’explique par
le fait que le terme η Fxk−xk√∑k

ℓ=0∥Fxℓ−xℓ∥2
2

est trop grand pour les premières itérations si η est grand.

2.2

Même question pour (Ada−VI(V )
∗ ) et (VI(V )

∗ )

(a) ∥vk − v∗∥∞ (b) ∥vk −B∗vk∥∞

On obtient les mêmes résultats, la convergence est plus rapide pour les η dans un premier temps
mais la convergence est plus lente pour un plus grand nombre d’itération. On remarque en outre que la
converge des algorithmes Ada convergent vers des valeurs plus grandes que pour la question précédente
même si, ces valeurs restent très faibles.

3 Extensions

Reprendre la démarche de la Section 2 en incorporant, par exemple, un ou plusieurs des aspects suivants
:

• itérations de fonctions action-valeur,

• itérations asynchrones

• méthode d’apprentissage par renforcement utilisant des estimateurs stochastiques des opérateurs
de Bellman

• approximation de la fonction valeur par une classe paramétrique

• variante de (Ada-FP) définie composante par composante

xk+1,j = xk,j + η
F (xk)j − xk,j√∑k
ℓ=0(F (xℓ)j − xℓ,j)2

, 1 ≤ j ≤ d, k ≥ 0

3.1 Itérations de fonctions action-valeur

On reprend reprend l’algorithme Ada et on l’adapte pour les fonctions action-valeur de la façon suiv-
ante:

qk+1 = qk + η
Bπqk − qk√∑k
ℓ=0∥Bπqℓ − qℓ∥22

, k ≥ 0, (Ada−VI(V )
∗ )

De la même manière que précédemment on calcule les différences de normes en remplaçant les vk
par des qk:

7



(a) ∥qk − qπ∥∞ (b) ∥qk −Bπqk∥∞

On observe les même résultats, les taux d’apprentissage plus élévé favorisent une convergence plus
précises au fur et à mesure des itérations.

3.1.1 Variante de (Ada-FP) définie composante par composante

On définit la variante de (Ada-FP) définie composante par composante de la façon suivante:

vk+1,j = vk,j + η
Bπ(vk)j − vk,j√∑k
ℓ=0(Bπ(vℓ)j − vℓ,j)2

, 1 ≤ j ≤ d, k ≥ 0

Le processus étant plus long à tourner, on se limitera à cent itération, ce qui est suffisant pour voir
les tendances se former bien que rendant la comparaison avec les autres méthodes plus laborieuses.

(a) ∥vk − vπ∥∞ (b) ∥vk −Bπvk∥∞

On remarque comme précédemment qu’un η trop grand entrâıne des variations trop importantes
dans les premières itérations. On remarque de plus qu’un learning rate trop élevé n’entraine pas des
convergence spécialement plus rapide.

Au final, les différents algorithmes n’entrainent pas spécialement des résultats plus probant, cela
peut être du au fait que le MDP est peut être trop simple et la convergence est trop rapide.

8


	Etude théorique d’un nouvel algorithme de points fixes
	
	
	
	
	

	
	
	
	

	

	Comparaison en pratique avec les algorithmes classiques
	
	

	Extensions
	Itérations de fonctions action-valeur
	Variante de (Ada-FP) définie composante par composante



